Long-term simulation of the effect of climate changes on the growth of main Central European forest tree species.

Fyodor A. Tatarinov1,2 and Emil Cienciala2

1Institute of Ecology and Evolution RAS, Leninsky prospekt 33, Moscow, Russia.
2IFER - Institute of Forest Ecosystem Research, Areál 1. Jílovské a.s. 1544, 254 01 Jílové u Prahy, Czech Republic.
Process-based model BIOME-BGC (Thornton, 1998)

Biome-BGC: C and N dynamics with disturbance components
(bold indicates interface with historical database)
Adaptation and modification of the model

- Management options: thinning, felling, planting of another species;
- Change of rainfall interception and evaporation routine
- Direct input of N deposition time series
- Independent setting of fine roots mortality
- Climate changes: gradual linear change of Tmin, Tmax, Precipitation, VPD and Radiation available, both at annual or monthly base

Input data for simulation

- Yield tables (Černý et al., 1996)
- Permanent research plots in Czech Republic
- Daily meteorological data from 44 stations recalculated for each plot
- Earlier obtained parameterizations for spruce, pine, beech and oak stands (Cienciala and Tatarinov, 2006)
- **Expected environmental changes in 2000-2100**
CO$_2$ concentration change

(mean of available emission scenarios SRES-A1 and SRES-B2)
N deposition change

(data for 1850-2000 from Kopáček & Veselý, 2005)
Climate changes (3 scenarios)
(recalculated for Czech Republic by Dubrovsky et al. (2005))
Dashed lines present annual means

Mean daily temperature changes in 2100

Precipitation changes in 2100

Scenarios:
- CSIRO
- HadCM3
- NCAR-PCM

(recalculated for Czech Republic by Dubrovsky et al. (2005))

Dashed lines present annual means
Management scenarios
(Actual scenario see Cienciala & Tatarinov, 2006)

Spruce plot 501621

Scenario:
- Actual
- Basic

Actual planting (1926)

Prescribed thinning

Actual thinning
Totally 14 monospecies plots included:
4 spruce, 4 pine, 3 beech, 3 oak.
For each plot the following data were available

• Elevation
• Annual precipitation total
• N deposition in 2002
• Soil type
• Data from 4 to 8 forest inventories before and after thinning
Quantifying the effect of environmental changes

Change of variable X at the year t (or effect of environmental changes on X),

$$\Delta X(t) = \frac{X_{\text{changed_climate}}(t) - X_{\text{constant_climate}}(t)}{X_{\text{constant_climate}}(t)}$$
Results
Basic scenario: examples of environmental change effects

Spruce 501625

Year

Stem C change (%)

0 5 10 15 20

Stem C (kg m⁻²)

Stem C (control)

Change for scenario

CSIRO

HadCM3

NCAR-PCM

Beech 501118

Year

Stem C change (%)

0 5 10 15 20

Stem C (kg m⁻²)

Stem C (control)

Change for scenario

CSIRO

HadCM3

NCAR-PCM

Pine 500622

Year

Stem C change (%)

0 5 10 15 20

Stem C (kg m⁻²)

Stem C (control)

Change for scenario

CSIRO

HadCM3

NCAR-PCM

Oak 501069

Year

Stem C change (%)

0 5 10 15 20

Stem C (kg m⁻²)

Stem C (control)

Change for scenario

CSIRO

HadCM3

NCAR-PCM
Mean effect of environmental changes on carbon pools
(mean % of change for 2080-2100 under environmental changes relatively to control scenario).

![Graph showing mean effect of environmental changes on carbon pools across different scenarios and species. The graph includes data for Spruce, Pine, Beech, and Oak species under different Scenarios: CSIRO, Spruce Pine Beech Oak, HadCM3, and NCAR-PCM. The x-axis represents the species, and the y-axis shows the percentage change in carbon pools (Litter C, Soil C, Total C, Stem C).]
Why growth could decrease under climate change scenarios (especially HadCM3)?

Sole effect of climate (no CO$_2$ and N deposition changes) and N deposition changes.

Precipitation changes in 2100

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>1</th>
<th>62</th>
<th>122</th>
<th>183</th>
<th>244</th>
<th>304</th>
<th>365</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSIRO</td>
<td>-30%</td>
<td>-20%</td>
<td>-10%</td>
<td>0%</td>
<td>4%</td>
<td>8%</td>
<td></td>
</tr>
<tr>
<td>HadCM3</td>
<td>-16%</td>
<td>-12%</td>
<td>-8%</td>
<td>-4%</td>
<td>0%</td>
<td>4%</td>
<td></td>
</tr>
</tbody>
</table>

Soil water change

<table>
<thead>
<tr>
<th>Mean ±0.95 Conf. Interval</th>
<th>1</th>
<th>62</th>
<th>122</th>
<th>183</th>
<th>244</th>
<th>304</th>
<th>365</th>
</tr>
</thead>
<tbody>
<tr>
<td>-50%</td>
<td>-40%</td>
<td>-30%</td>
<td>-20%</td>
<td>-10%</td>
<td>0%</td>
<td>10%</td>
<td></td>
</tr>
<tr>
<td>-40%</td>
<td>-30%</td>
<td>-20%</td>
<td>-10%</td>
<td>0%</td>
<td>10%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Daily NPP change

<table>
<thead>
<tr>
<th>Mean ±0.95 Conf. Interval</th>
<th>1</th>
<th>62</th>
<th>122</th>
<th>183</th>
<th>244</th>
<th>304</th>
<th>365</th>
</tr>
</thead>
<tbody>
<tr>
<td>-30%</td>
<td>-20%</td>
<td>-10%</td>
<td>0%</td>
<td>10%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-20%</td>
<td>-10%</td>
<td>0%</td>
<td>10%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For more detailed analysis and graphs, refer to the attached figures.
Sole effect of climate is usually negative for conifers, positive for deciduous, but smaller than with CO$_2$ and N deposition changes included.

Climate + CO$_2$ + N

<table>
<thead>
<tr>
<th>Species</th>
<th>Scenario HadCM3</th>
<th></th>
<th></th>
<th></th>
<th>Scenario NCAR-PCM</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Litter C</td>
<td>Soil C</td>
<td>Total C</td>
<td>Stem C</td>
<td>Litter C</td>
<td>Soil C</td>
<td>Total C</td>
</tr>
<tr>
<td>Spruce</td>
<td>-10%</td>
<td></td>
<td></td>
<td></td>
<td>-10%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pine</td>
<td>5%</td>
<td></td>
<td></td>
<td></td>
<td>5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beech</td>
<td>0%</td>
<td></td>
<td></td>
<td></td>
<td>0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oak</td>
<td>10%</td>
<td></td>
<td></td>
<td></td>
<td>10%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Only climate
Mean changes of carbon pools in 2080-2100 under different scenarios: some examples

<table>
<thead>
<tr>
<th>Species</th>
<th>Environmental changes</th>
<th>Change of C pool, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Trees</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Climate</td>
</tr>
<tr>
<td>Spruce</td>
<td>HadCM3</td>
<td>+</td>
</tr>
<tr>
<td>Spruce</td>
<td>HadCM3</td>
<td>const</td>
</tr>
<tr>
<td>Spruce</td>
<td>const</td>
<td>+</td>
</tr>
<tr>
<td>Spruce</td>
<td>const</td>
<td>const</td>
</tr>
<tr>
<td>Spruce</td>
<td>const</td>
<td>+</td>
</tr>
<tr>
<td>Beech</td>
<td>HadCM3</td>
<td>+</td>
</tr>
<tr>
<td>Beech</td>
<td>HadCM3</td>
<td>const</td>
</tr>
<tr>
<td>Beech</td>
<td>const</td>
<td>+</td>
</tr>
<tr>
<td>Beech</td>
<td>const</td>
<td>const</td>
</tr>
<tr>
<td>Beech</td>
<td>const</td>
<td>const</td>
</tr>
</tbody>
</table>

- **Effect of increasing CO₂** is always *positive*.
- **Effect of decreasing N** is always *negative*.

BUT the combined effect of CO₂ and N may be different for different species.

In particular, under current parameterization spruce is more sensitive to N, than beech.

(Tatarinov & Cienciala, 2006)
Mean changes of carbon pools in 2080-2100: monthly versus annual climate changes

<table>
<thead>
<tr>
<th>Species</th>
<th>Environmental changes</th>
<th>Change of C pool, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Climate</td>
<td>CO₂</td>
</tr>
<tr>
<td>Beech</td>
<td>H monthly</td>
<td>const</td>
</tr>
<tr>
<td>Beech</td>
<td>H annual</td>
<td>const</td>
</tr>
<tr>
<td>Pine</td>
<td>H monthly</td>
<td>const</td>
</tr>
<tr>
<td>Pine</td>
<td>H annual</td>
<td>const</td>
</tr>
<tr>
<td>Spruce</td>
<td>H monthly</td>
<td>const</td>
</tr>
<tr>
<td>Spruce</td>
<td>H annual</td>
<td>const</td>
</tr>
</tbody>
</table>

"Annual means of climate changes had considerably smaller effect than monthly changes"
Basic vs real management scenario

- A later stand planting results in higher response (peak) to climate change for young stand
- The effect of planting year becomes insignificant at stand maturity
Conclusions

• Monthly data are needed to study effect of climate change.
• Climate change in the conditions of Czech Republic may decrease forest carbon sink due to increasing summer drought.
• This effect is more pronounced for conifers, the growth of deciduous may slightly increase.
• N deposition dynamics is critical for predicting forest carbon balance.
Thank you!